1、逐行读取txt文件
def read_txt_file_by_line(filepath):
with open(filepath, 'r', encoding='utf-8') as file:
for line in file:
print(line.strip())
# 示例调用
read_txt_file_by_line('example.txt')
2、统计单词出现次数
from collections import Counter
def count_word_frequency(txt_file):
with open(txt_file, 'r', encoding='utf-8') as file:
words = file.read().split()
word_freq = Counter(words)
return word_freq
# 示例调用
word_freq = count_word_frequency(r'D:\1.txt')
for word, freq in word_freq.most_common():
print(f'{word}: {freq}')
2.1运行演示

3、过滤空行和注释行
def filter_empty_and_comment_lines(filepath):
with open(filepath, 'r', encoding='utf-8') as file:
lines = file.readlines()
filtered_lines = [line for line in lines if line.strip() and not line.strip().startswith('#')]
return filtered_lines
# 示例调用
filtered = filter_empty_and_comment_lines('example.txt')
for line in filtered:
print(line.strip())
4、提取邮件地址或URL
def extract_emails_and_urls(txt_file):
email_pattern = r'[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}'
url_pattern = r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+'
with open(txt_file, 'r', encoding='utf-8') as file:
content = file.read()
emails = re.findall(email_pattern, content)
urls = re.findall(url_pattern, content)
return emails, urls
*# 示例调用*
emails, urls = extract_emails_and_urls('example.txt')
print("Emails found:", emails)
print("URLs found:", urls)